样品制备
将2.5wt%商业明胶溶于去离子水中,温度为50°C。对这种透明混合物加入1wt%的浓度添加直径为784 nm的示踪聚苯乙烯颗粒(microParticles GmbH®)。在如此高的颗粒浓度下,样品呈现白色(图1)。随后,将溶液引入50°C的5 mm厚玻璃试管中,装入DWS RheoLab。然后,将明胶溶液从50°C逐渐冷却至15°C,50-30℃的温度梯度为5°C,从30°C开始每步0.5°C。在每个温度下,在测量前等待30分钟,以保证平衡。冷却速率不影响明胶的凝胶点[7,8]。使用DWS RheoLab确定样品的传输平均自由程l*;在研究的温度范围内,l*为290 μm。
结果和讨论
在高于Tgel的溶液中,透射获得的ICF衰减为零,但在刚低于Tgel的凝胶相中保持衰减为0(图2a)。然而,随着样品在凝胶相中进一步冷却,在τ值较大时ICF曲线平台的高度H被观察到增加(图2)。为了量化后者的观察结果,使用以下函数对归一化的ICF进行拟合:f(τ) = A exp(-τ/τC) + H ,其中A和τc分别是振幅和衰减特征时间。根据Schurtenberger等人[3]的说法,凝胶点的定义是H从零开始上升。因此,Tgel = 22.5°C。
参考文献
[1] D.A. Weitz, D.J. Pine, Diffusing-Wave Spectroscopy. In Dynamic Light Scattering; Brown, W., Ed.; Oxford University Press: New York, 1993, 652-720.
[2] T.G.Mason, D.A.Weitz, Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids, Phys. Rev. Lett., 1995, 74, 1250-1253.
[3] S. Romer, F. Scheffold, P. Schurtenberger, Sol-Gel Transition of Concentrated Colloidal Suspensions, Phys. Rev. Lett., 2000,85, 4980-4983.
[4] J. Peyrelasse, M. Lamarque, J.P. Habas, N. El Bounia, Rheology of Gelatin Solutions at the Sol-Gel Transition, Phys. Rev. E, 1996, 53, 6126-6133.
[5] T. Matsunaga, M. Shibayama, Gel Point determination of Gelatin Hydrogels by Dynamic Light Scattering and Rheological Measurements, Phys. Rev. E, 2007, 76, 030401 (R).
[6] R.G. Larson, The Structure and Rheology of Complex Fluids. Gubbins K.E., Ed.; Oxford University Press: New York, 1999, 232-260.
[7] H.B. Bohidar, S.S. Jena, Kinetics of sol-gel transition in thermoreversible gelation of gelatin, J. Chem. Phys., 1993, 98, 8970-8977.
[8] The gel point of other colloidal systems could be cooling-rate dependent.